2004 Abstracts

Bettencourt-Dias M, Giet R, Sinka R, Mazumdar A, Lock WG, Balloux F, Zafiropoulos PJ, Yamaguchi S, Winter S, Carthew RW, Cooper M, Jones D, Frenz L and Glover DM

Genome-wide survey of protein kinases required for cell cycle progression.

Cycles of protein phosphorylation are fundamental in regulating the progression of the eukaryotic cell through its division cycle. Here we test the complement of Drosophila protein kinases (kinome) for cell cycle functions after gene silencing by RNA-mediated interference. We observed cell cycle dysfunction upon downregulation of 80 out of 228 protein kinases, including most kinases that are known to regulate the division cycle. We find new enzymes with cell cycle functions; some of these have family members already known to phosphorylate microtubules, actin or their associated proteins. Additionally, depletion of several signalling kinases leads to specific mitotic aberrations, suggesting novel roles for familiar enzymes. The survey reveals the inter-digitation of systems that monitor cellular physiology, cell size, cellular stress and signalling processes with the basic cell cycle regulatory machinery.

Nature 432:980-987

Fischer PM, Glover DM and Lane DP

Targeting the cell cycle

Many existing cancer chemotherapies interfere with DNA replication and formation of the mitotic spindle, that is, the processes central to the cell cycle. Alternative strategies aimed at targeting cell-cycle components that are specifically deregulated in tumour cells are now being explored. Several groups of protein kinases associated with aberrant tumour cell-cycle checkpoints are used as targets for the discovery of small-molecule inhibitor leads. The first of these compounds are now being evaluated in the clinic.

Drug Discovery Today: Therapeutic Strategies 1:417-423

Mathe E, Kraft C, Giet R, Deak P, Peters JM and Glover DM

The E2-C vihar is required for the correct spatiotemporal proteolysis of cyclin B and itself undergoes cyclical degradation.

Background: Proteolytic degradation of mitotic regulatory proteins first requires these targets to be ubiquitinated. This is regulated at the level of conjugation of ubiquitin to substrates by the anaphase-promoting complex/cyclosome (APC/C) ubiquitin-protein ligase. Substrate specificity and temporal activity of the APC/C has been thought to lie primarily with its two activators, Cdc20/Fizzy and Cdh1/Fizzy-related. Results: Here, we show that reduction in the E2 ubiquitin-conjugating enzyme (UBC) of the E2-C family that is encoded by the Drosophila gene vihar (vih), by either mutation or RNAi, leads to an accumulation of cells in a metaphase-like state. Cyclin B accumulates to high levels in all mitotic vih cells, particularly at the spindle poles. Vihar E2-C is present in the cytoplasm of mitotic cells but also associates with centrosomes, and its own degradation is initiated at the metaphase-anaphase transition. Expression of destruction D box mutants of vihar in the syncytial embryo results in mitotic arrest at late anaphase. In contrast to hypomorphic mutants, Cyclin B is degraded at the spindle poles and accumulates in the equatorial region of the spindle. Conclusions: In Drosophila, the Vihar E2 UBC contributes to the spatiotemporal control of Cyclin B degradation that first occurs at the spindle poles. APC/C-mediated proteolysis of Vihar E2-C autoinactivates the APC/C at the centrosome before a second wave of proteolysis to degrade Cyclin B on the rest of the spindle and elsewhere in the cell.

Current Biology 14:1723-1733

Bettencourt-Dias M, Sinka R, Frenz L and Glover DM

RNAi in Drosophila Cell Cultures

No abstract available

In M Sohail (Ed), Gene Silencing by RNA Interference: Technology and Applications, CRC Press, Philadelphia, USA

Savoian MS, Gatt MK, Riparbelli MG, Callaini G and Glover DM

Drosophila Klp67A is required for proper chromosome congression and segregation during meiosis I.

Drosophila Klp67A belongs to the Kip3 subfamily of Kinesin-type microtubule catastrophe factors. In primary spermatocytes, loss of klp67A leads to defects in karyokinesis and cytokinesis. We show that these cells formed disorganised, bipolar spindles that contained increased numbers of microtubules. The kinetochore fibres were wavy and bent, whereas astral microtubules appeared abnormally robust and formed cortical bundles. Time-lapse studies revealed that during biorientation, the chromosomes in klp67A mutant cells continued to reorient for about twice as long as those in control cells. Metaphase plates were poorly defined in the mutants and often formed at non-equatorial positions. Consistent with the above abnormalities in chromosome congression, we found that in wild-type cells Klp67A associated with prometaphase/metaphase kinetochores before redistributing to the central spindle at anaphase onset. Although the timing of this redistribution of kinetochores argues against a role in anaphase chromosome segregation, dyads in the mutants disjoined but exhibited greatly diminished poleward velocities. They travelled on average at approximately 34% of the velocity of their wild-type counterparts and often decondensed at non-polar locations. Hypomorphic mutations of klp67A may lead to segregation defects

Journal of Cell Science 117:3669-3677

D'Avino PP, Savoian MS and Glover DM

Mutations in sticky lead to defective organization of the contractile ring during cytokinesis and are enhanced by Rho and suppressed by Rac.

The contractile ring is a highly dynamic structure, but how this dynamism is accomplished remains unclear. Here, we report the identification and analysis of a novel Drosophila gene, sticky (sti), essential for cytokinesis in all fly proliferating tissues. sti encodes the Drosophila orthologue of the mammalian Citron kinase. RNA interference-mediated silencing of sti in cultured cells causes them to become multinucleate. Components of the contractile ring and central spindle are recruited normally in such STICKY-depleted cells that nevertheless display asymmetric furrowing and aberrant blebbing. Together with an unusual distribution of F-actin and Anillin, these phenotypes are consistent with defective organization of the contractile ring. sti shows opposite genetic interactions with Rho and Rac genes suggesting that these GTPases antagonistically regulate STICKY functions. Similar genetic evidence indicates that RacGAP50C inhibits Rac during cytokinesis. We discuss that antagonism between Rho and Rac pathways may control contractile ring dynamics during cytokinesis.

Journal of Cell Biology 166:61-71

Inoue YH, Savoian MS, Suzuki T, Mathe E, Yamamoto MT and Glover DM

Mutations in orbit/mast reveal that the central spindle is comprised of two microtubule populations, those that initiate cleavage and those that propagate furrow ingression.

We address the relative roles of astral and central spindle microtubules (MTs) in cytokinesis of Drosophila melanogaster primary spermatocytes. Time-lapse imaging studies reveal that the central spindle is comprised of two MT populations, "interior" central spindle MTs found within the spindle envelope and "peripheral" astral MTs that probe the cytoplasm and initiate cleavage furrows where they contact the cortex and form overlapping bundles. The MT-associated protein Orbit/Mast/CLASP concentrates on interior rather than peripheral central spindle MTs. Interior MTs are preferentially affected in hypomorphic orbit mutants, and consequently the interior central spindle fails to form or is unstable. In contrast, peripheral MTs still probe the cortex and form regions of overlap that recruit the Pav-KLP motor and Aurora B kinase. orbit mutants have disorganized or incomplete anillin and actin rings, and although cleavage furrows initiate, they ultimately regress. Our work identifies a new function for Orbit/Mast/CLASP and identifies a novel MT population involved in cleavage furrow initiation.

Journal of Cell Biology 166:49-60

Gray D, Plusa B, Piotrowska K, Na J, Tom B, Glover DM and Zernicka-Goetz M

First cleavage of the mouse embryo responds to change in egg shape at fertilization.

Although mouse development is regulative, the cleavage pattern of the embryo is not random. The first cleavage tends to relate to the site of the previous meiosis. Sperm entry might provide a second cue, but evidence for and against this is indirect and has been debated. To resolve whether sperm entry position relates to the first cleavage, we have followed development from fertilization by time-lapse imaging. This directly showed cytokinesis passes close to the site of the previous meiosis and to both the sperm entry site and trajectory of the male pronucleus in a significant majority of eggs. We detected asymmetric distribution of Par6 protein in relation to the site of meiosis, but not sperm entry. Unexpectedly, we found the egg becomes flattened upon fertilization in an actin-mediated process. The sperm entry position tends to lie at one end of the short axis along which cleavage will pass. When we manipulated eggs to change their shape, this repositioned the cleavage plane such that eggs divided along their experimentally imposed short axis. Such manipulated eggs were able to develop to term, emphasizing the regulative nature of their development.

Current Biology 14:397-405

Abstracts

Navigate to year:

2003 2005

Background information on our research is available.