2005 Abstracts

Carpenter ATC

Sturtevant Revisited.

No abstract available

Drosophila Information Service 88:147

Soares ML, Haraguchi S, Torres-Padilla ME, Kalmar T, Carpenter L, Bell G, Morrison A, Ring CJ, Clarke NJ, Glover DM and Zernicka-Goetz M

Functional studies of signaling pathways in peri-implantation development of the mouse embryo by RNAi.

BACKGROUND: Studies of gene function in the mouse have relied mainly on gene targeting via homologous recombination. However, this approach is difficult to apply in specific windows of time, and to simultaneously knock-down multiple genes. Here we report an efficient method for dsRNA-mediated gene silencing in late cleavage-stage mouse embryos that permits examination of phenotypes at post-implantation stages. RESULTS: We show that introduction of Bmp4 dsRNA into intact blastocysts by electroporation recapitulates the genetic Bmp4 null phenotype at gastrulation. It also reveals a novel role for Bmp4 in the regulation the anterior visceral endoderm specific gene expression and its positioning. We also show that RNAi can be used to simultaneously target several genes. When applied to the three murine isoforms of Dishevelled, it leads to earlier defects than previously observed in double knock-outs. These include severe delays in post-implantation development and defects in the anterior midline and neural folds at headfold stages. CONCLUSION: Our results indicate that the BMP4 signalling pathway contributes to the development of the anterior visceral endoderm, and reveal an early functional redundancy between the products of the murine Dishevelled genes. The proposed approach constitutes a powerful tool to screen the functions of genes that govern the development of the mouse embryo.

BMC Developmental Biology 5:28

Page AR, Kovacs A, Deak P, Torok T, Kiss I, Dario P, Bastos C, Batista P, Gomes R, Ohkura H, Russell S and Glover DM

Spotted-dick, a zinc-finger protein of Drosophila required for expression of Orc4 and S phase.

The highly condensed chromosomes and chromosome breaks in mitotic cells of a Drosophila mutant, spotted-dick/pita, are the consequence of defects in DNA replication. Reduction of levels of Spotted-dick protein, by either RNAi or mutation, leads to the accumulation of cells that have DNA content intermediate to 2N and 4N in proliferating tissues and also compromises endoreduplication in larval salivary glands. The Spotted-dick Zinc-finger protein is present in the nuclei of cells committed to proliferation but necessary in cells undertaking S phase. We show that Spotted-dick/Pita functions as a transcription factor and that, in cultured S2 cells, it is an activator of expression of some 30 genes that include the Orc4 gene, required for initiation of DNA replication. Chromatin immunoprecipitation indicates that it associates with the genes that it activates in S2 cells together with other sites that could represent genes activated in other tissues. We discuss the role of Spotted-dick in the coordination of cellular growth and DNA replication.

EMBO Journal 24:4304-4315

Bettencourt-Dias M, Rodrigues-Martins A, Carpenter L, Riparbelli M, Lehmann L, Gatt MK, Carmo N, Balloux F, Callaini G and Glover DM

SAK/PLK4 is required for centriole duplication and flagella development.

BACKGROUND: SAK/PLK4 is a distinct member of the polo-like kinase family. SAK-/- mice die during embryogenesis, whereas SAK+/- mice develop liver and lung tumors and SAK+/- MEFs show mitotic abnormalities. However, the mechanism underlying these phenotypes is still not known. RESULTS: Here, we show that downregulation of SAK in Drosophila cells, by mutation or RNAi, leads to loss of centrioles, the core structures of centrosomes. Such cells are able to undergo repeated rounds of cell division, but display broad disorganized mitotic spindle poles. We also show that SAK mutants lose their centrioles during the mitotic divisions preceding male meiosis but still produce cysts of 16 primary spermatocytes as in the wild-type. Mathematical modeling of the stereotyped cell divisions of spermatogenesis can account for such loss by defective centriole duplication. The majority of spermatids in SAK mutants lack centrioles and so are unable to make sperm axonemes. Finally, we show that depletion of SAK in human cells also prevents centriole duplication and gives rise to mitotic abnormalities. CONCLUSIONS: SAK/PLK4 is necessary for centriole duplication both in Drosophila and human cells. Drosophila cells tolerate the lack of centrioles and undertake mitosis but cannot form basal bodies and hence flagella. Human cells depleted of SAK show error-prone mitosis, likely to underlie its tumor-suppressor role.

Current Biology 15:2199-2207

Gatt MK, Savoian MS, Riparbelli MG, Massarelli C, Callaini G and Glover DM

Klp67A destabilises pre-anaphase microtubules but subsequently is required to stabilise the central spindle.

Klp67A is a member of the Kip3 subfamily of microtubule destabilising kinesins, the loss of which results in abnormally long and stable pre-anaphase microtubules. Here we examine its role during cytokinesis in Drosophila primary spermatocytes that require the coordinated interaction of an interior and peripheral set of central spindle microtubules. In mutants anaphase B spindles elongated with normal kinetics but bent towards the cortex. Both peripheral and interior spindle microtubules then formed diminished bundles of abnormally positioned central spindle microtubules associated with the pavarotti-KLP and KLP3A motor proteins. The minus ends of these were poorly aligned as revealed by Asp protein localisation. Furrows always initiated at the sites of central spindle bundles but could be unilateral or nonequatorially positioned. Ectopic furrows were stimulated by the interior central spindle and formed only after this structure buckled and contacted the cortex. Furrows often halted and regressed as they could not be sustained by the central spindles that became increasing unstable over time and often completely degraded. Consistent with this, actin and anillin failed to form homogenous bands. Thus, the Klp67A microtubule catastrophe factor is required for cytokinesis by regulating both the formation and stability of the central spindle.

Journal of Cell Science 118:2671-2682

D'Avino PP, Savoian MS and Glover DM

Cleavage furrow formation and ingression during animal cytokinesis: a microtubule legacy.

Cytokinesis ensures the proper partitioning of the nuclear and cytoplasmic contents into independent daughter cells at the end of cell division. Although the metazoan mitotic spindle has been implicated in the placement and advancement of the cleavage furrow, the molecules responsible for these processes have remained elusive. Recent studies have provided insights into the role of different microtubule structures and associated proteins in cleavage furrow positioning and ingression together with the signalling events that regulate the dynamics of the equatorial cell cortex during cytokinesis. We try to unify these findings into a general model of cytokinesis in which both astral and central spindle microtubules have the ability to induce furrowing. We further propose that the evolutionarily conserved centralspindlin complex serves as a master controller of cell cleavage in Drosophila by promoting both furrow formation and ingression. The same mechanism might be conserved in other organisms

Journal of Cell Science 118:1549-1558

Plusa B, Hadjantonakis AK, Gray D, Piotrowska-Nitsche K, Jedrusik A, Papaioannou VE, Glover DM and Zernicka-Goetz M

The first cleavage of the mouse zygote predicts the blastocyst axis.

One of the unanswered questions in mammalian development is how the embryonic-abembryonic axis of the blastocyst is first established. It is possible that the first cleavage division contributes to this process, because in most mouse embryos the progeny of one two-cell blastomere primarily populate the embryonic part of the blastocyst and the progeny of its sister populate the abembryonic part. However, it is not known whether the embryonic-abembryonic axis is set up by the first cleavage itself, by polarity in the oocyte that then sets the first cleavage plane with respect to the animal pole, or indeed whether it can be divorced entirely from the first cleavage and established in relation to the animal pole. Here we test the importance of the orientation of the first cleavage by imposing an elongated shape on the zygote so that the division no longer passes close to the animal pole, marked by the second polar body. Non-invasive lineage tracing shows that even when the first cleavage occurs along the short axis imposed by this experimental treatment, the progeny of the resulting two-cell blastomeres tend to populate the respective embryonic and abembryonic parts of the blastocyst. Thus, the first cleavage contributes to breaking the symmetry of the embryo, generating blastomeres with different developmental characteristics.

Nature 434:391-395

Riparbelli MG, Inoue Y, Glover DM and Callaini G

parva germina, a gene involved in germ cell maintenance during male and female Drosophila gametogenesis.

We report the initial characterization of a gene, parva germina (pag), required for germ cell maintenance in both males and females. pag gonads contain a small number of germline stem cells at the onset of gametogenesis. In contrast, adult mutant gonads are either empty or have a very small number of germ cells that never develop in 16-cell cysts. Ovarioles and testes, therefore, are rudimentary, and the very few germ cells they contain are unable to differentiate into eggs or sperm. Germline stem cells are progressively depleted over time. The average number of germ cells, therefore, decreases in pag mutant ovarioles with the age of the mother, whereas the proportion of agametic germaria goes up. These observations suggest that the pag gene product is involved in germ cell maintenance in both male and female gametogenesis.

Developmental Dynamics 232:835-844

Plusa B, Frankenberg S, Chalmers A, Hadjantonakis AK, Moore CA, Papalopulu N, Papaioannou VE, Glover DM and Zernicka-Goetz M

Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo.

Generation of inside cells that develop into inner cell mass (ICM) and outside cells that develop into trophectoderm is central to the development of the early mouse embryo. Critical to this decision is the development of cell polarity and the associated asymmetric (differentiative) divisions of the 8-cell-stage blastomeres. The underlying molecular mechanisms for these events are not understood. As the Par3/aPKC complex has a role in establishing cellular polarity and division orientation in other systems, we explored its potential function in the developing mouse embryo. We show that both Par3 and aPKC adopt a polarized localization from the 8-cell stage onwards and that manipulating their function re-directs cell positioning and consequently influences cell fate. Injection of dsRNA against Par3 or mRNA for a dominant negative form of aPKC into a random blastomere at the 4-cell stage directs progeny of the injected cell into the inside part of the embryo. This appears to result from both an increased frequency by which such cells undertake differentiative divisions and their decreased probability of retaining outside positions. Thus, the natural spatial allocation of blastomere progeny can be over-ridden by downregulation of Par3 or aPKC, leading to a deceased tendency for them to remain outside and so develop into trophectoderm. In addition, this experimental approach illustrates a powerful means of manipulating gene expression in a specific clonal population of cells in the preimplantation embryo.

Journal of Cell Science 118:505-515

Prigent C, Glover DM and Giet R

Drosophila Nek2 protein kinase knockdown leads to centrosome maturation defects while overexpression causes centrosome fragmentation and cytokinesis failure.

The Nima-related kinase 2 (Nek2) has been implicated in the regulation of centrosome integrity and separation in several species and is a candidate for cell transformation. We now show that reduction of levels of the Drosophila Nek2 by RNAi in cultured cells leads to both dispersal of centrosomal antigens and formation of ectopic bodies of centrosomal antigens. Overexpression of the active DmNek2 kinase resulted in an increase in the number of mitotic cells with fragmented centrosomes. The DmNek2 protein kinase is associated with punctuate bodies within the centrosome consistent with its presence on centrioles. In addition, it is present at lower levels on the midbody during cytokinesis. Midbody association was enhanced following overexpression, whereupon the DmNek2 protein kinase also localised to the cell cortex becoming concentrated in the region of the cleavage furrow in late telophase. Many of such cells showed abnormalities in the organisation of anillin and actin in the cleavage furrow that was associated with formation of ectopic membrane protrusions between each daughter cell. We discuss potential roles for DmNek2 in maintaining centrosome integrity in mitosis, during cytokinesis, and consequently for the fidelity of chromosome segregation.

Experimental Cell Research 303:1-13

Glover DM

Polo kinase and progression through M phase in Drosophila: a perspective from the spindle poles.

Genes for the mitotic kinases Polo and Aurora A were first identified in Drosophila through screens of maternal effect lethal mutations for defects in spindle pole behaviour. These enzymes have been shown to be highly conserved and required for multiple functions in mitosis. Polo is stabilized at the centrosome by association with Hsp90. It is required for centrosome maturation on M-phase entry in order to recruit the ?-tubulin ring complex and activate the abnormal spindle protein, Asp. These events facilitate the nucleation of minus ends of microtubules at the centrosome. The localization of Polo at the kinetochore and the mid-zone of the central spindle together with the phenotypes of polo mutants point to functions at the metaphase to anaphase transition and in cytokinesis. The latter are mediated, at least in part, through the Pavarotti kinesin-like motor protein and its conserved counterparts in other metazoans.

Oncogene 24:230-237

Abstracts

Navigate to year:

2004 2006

Background information on our research is available.